

PRODUCT SPECIFICATION

16*2 Characters COB LCD MODULE MODEL: LT-1602E-RGW01 Ver:1.0

< \diamond > Finally Specification

	CUSTOMER'S APPROVAL										
CUSTOMER :											
SIG	NATURE:	DATE:									

APPROVED	PM	PD	PREPARED
BY	REVIEWD	REVIEWD	Ву

Prepared By: LEADER TIME SRL VIA MONS. PROSDOCIMI, 27 36042 BREGANZE (VI)

• This specification is subject to change without notice. Please contact LT or it's representative before designing your product based on this specification.

Issued Date: 2011.09.11 **Doc. No.:**

Revision Status

Version	Revise Date	Page	Content	Modified By
Ver. 1.0	2011.9.11		First Issued	

	Issued Date: 2011.09.11 Doc. No.:
Table of Contents	
No. Contents	Page
1. FEATURES	4
2. MECHANICAL SPECIFICATIONS	4
3. ELECTRICAL SPECIFICATIONS	4
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM	6
5. TIMING CHARACTERISTICS	7
6. COMMAND LIST	8
7. CHERACTER GENERATOR ROM	9
8. QUALITY SPECIFICATIONS	
9. RELIABILITY	15
10. HANDLING PRECAUTION	
11. OUTLINE DIMENSION	17

1. Features

The features of LCD are as follows

- * Display mode : FSTN/Transflective/Positive
- * Controller IC : AIP31066(English And Japanese)
- * Interface Input Data : 4 bit or 8 bit MPU
- * Driving Method : 1/16 Duty, 1/5Bias
- * Viewing Direction
 - : 6 O'clock
- * Backlight
- : LED/Side RGW
- *Sample No.
- : EC1602A4FSE6B-BJ

2. MECHANICAL SPECIFICATIONS

ltem	Specification	Unit
Module Size	122(W) x 44(H) x 13.3MAX(T)	mm
View display area	99.0 (W) x25(H)	mm
Activity Area	94.84 (W) x20(H)	mm
Character Font	5x7dots +cursor	-
Character Size	4.84(W) x 9.66 (H)	mm
Character Pitch	6.00(W) x 10.34(H)	mm
Dot size	0.92(W) x 1.1(H)	mm
Dot Pitch	0.98(W) x 1.16(H)	mm

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

ltem	Symbol	Stan				
item	Symbol	Min.	Тур.	Max.	Unit	
Supply Voltage For Logic	Vdd – Vss	-0.3	-	7.0	V	
Supply Voltage For LCD Drive	V_{OP} = VDD – Vo	Vdd -15.0	-	Vdd +0.3	V	
Input Voltage	Vin	-0.3	-	VDD+0.3	V	
Operating Temp.	Тор	-20	-	+70	°C	
Storage Temp.	Tst	-30	-	+80	°C	

*. NOTE: The response time will be extremely slow when the operating temperature is around -10°C, and the back ground will become darker at high temperature operating.

3-2 ELECTICAL CHARACTERISTICS 3-2-1.DC CHARACTERISTICS(VDD=4.5V~5.5V,Ta=25°C)

ltem		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic supply	Voltage	Vdd – Vss		4.5	5	5.5	V
LCD Dri	ve	V _{OP} =VDD-Vo	Ta = 25 °C	4.2	4.5	4.8	V
Input Voltage	"H" Level	V _{IH}		2.2	-	VDD	V
	"L" Level	V _{IL}	Vdd=5V±10%	-0.3	-	0.6	V
Frame Frequency		f _{FLM}		_	84.3	-	Hz
Current Cons	umption	I _{DD}		_	1.45	-	mA

3-3 BACKLIGHT

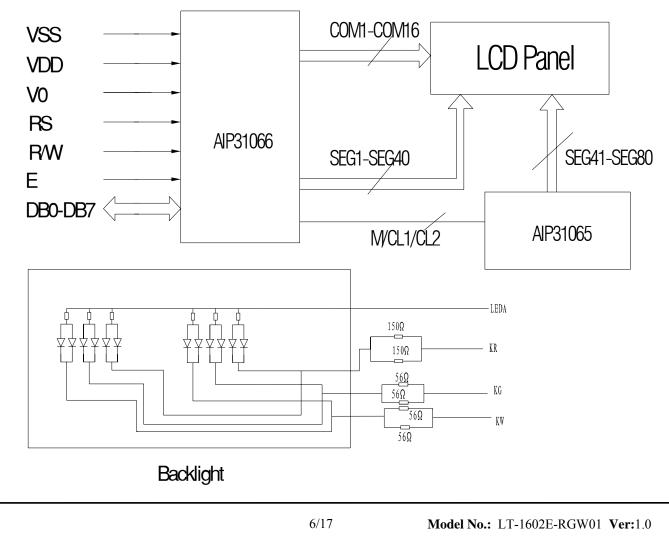
3-3-1. Absolute Maximum Ratings

ltem	Symbol	Condition	Min.			Тур.			Max.			Unit
	Cymson	oonanon	R	G	w	R	G	w	R	G	×	onn
Forward Current	IF								40	60	60	mA
Reverse Voltage	VR	Ta = 25 °C							5	5	5	V
Power Dissipation	PD								88	198	198	mW

3-3-2. Electrical-optical Characteristics

Item	Symb	Condition	Min.			Тур.			Max			Unit
	I		R	G	w	R	G	w	R	G	w	
Forward Voltage	Vf		-	-	-	2.2	3.3	3.3	-	-	-	V
Average Luminous Intensity	Lv	Red IF=40mA Green IF=60mA	-	-	-	20	200	260	-	-	-	cd/m
Emission wavelength	λр	White IF=60mA Ta = 25 °C	620	515	-	630	525	-	640	535	-	nm
Color coordinates			-	-	X:0.25 Y:0.25	-	-	X:0.28 Y:0.28	-	-	X:0.30 Y:0.30	

The brightness is measured without LCD panel


For operation above 25 °C,The lfm & Pd must be derated , the current derating is -0.36mA/ °C for DC drive and -0.86mA/ °C for Pulse drive ,the Power dissipation is -0.75mW/ °C.The product working current must not more than the 60% of the lfm or lfp according to the working temperature.

4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

4-1. INTERFACE PIN FUNCTION DESCRIPTION


PIN NO.	SYMBOL	FUNCIONS
1	KW	White Backlight unit kathode
2	KG	Green Backlight unit kathode
3	KR	Red Backlight unit kathode
4	LED_A	Backlight unit anode
5	VSS	Ground
6	VDD	Supply voltage for logical circuit
7	Vo	Supply voltage for LCD driving
8	RS	A signal for selecting registers. 1: Data Register (for read and write) 0: Instruction Register (for write)
9	R/W	A signal for selecting read or write actions.1: Read, 0: Write.
10	E	Enable signal for reading or writing data.
11-18	DB0-DB7	8 Bit Data Bus

4-2. BLOCK DIAGRAM

5. TIMING CHARACTERISTICS

AC Characteristics (V _{DD} = 4.5V ~ 5.5V, Ta = -30 ~ +8	35°C)			-	
Mode	Characteristic	Symbol	Min.	Тур.	Max.	Unit
	E Cycle Time	tc	500	-	-	
	E Rise / Fall Time	t _R ,t _F	-	-	20	
	E Pulse Width (High, Low)	tw	230	_	-	
Write Mode (Refer to Fig-1)	R/W and RS Setup Time	t _{su1}	40	-	-	ns
	R/W and RS Hold Time	t _{H1}	10	-	-	
	Data Setup Time	t _{H1} 10 - - t _{su2} 80 - - t _{H2} 10 - - t _c 500 - -				
	Data Hold Time	t _{H2}	10	 - 20 	-	
	E Cycle Time	tc	500	-	-	
	E Rise / Fall Time	Cycle Timetc500Rise / Fall Time t_R, t_F -Pulse Width (High, Low) t_w 230W and RS Setup Time t_{su1} 40W and RS Hold Time t_{H1} 10ta Setup Time t_{su2} 80ta Hold Time t_{H2} 10Cycle Time t_c 500Rise / Fall Time t_R, t_F -Pulse Width (High, Low) t_w 230W and RS Setup Time t_{su} 40W and RS Hold Time t_{H} 10M and RS Hold Time t_H 10M and RS Hold Time t_H 10M and RS Hold Time t_D -	-	20		
	E Pulse Width (High, Low)	tw	230	_	-	
Read Mode (Refer to Fig-2)	R/W and RS Setup Time	t₅u	40	-	-	ns
(Relef to Fig-2)	R/W and RS Hold Time	tн	10	-	-	
	Rise / Fall Time t_R, t_F -Pulse Width (High, Low) t_w 2302/W and RS Setup Time t_{su1} 402/W and RS Hold Time t_{H1} 102/W and RS Hold Time t_{H1} 102/W and RS Hold Time t_{gu2} 802/W and RS Hold Time t_{H2} 102/W and RS Hold Time t_{H2} 102/W and RS Hold Time t_R, t_F -2/W and RS Setup Time t_R, t_F -2/W and RS Setup Time t_{su} 402/W and RS Hold Time t_H 102/W and RS Hold Time t_H 102/W and RS Hold Time t_D -	-	120			
	Data Hold Time	t _{DH}	5	-	-	

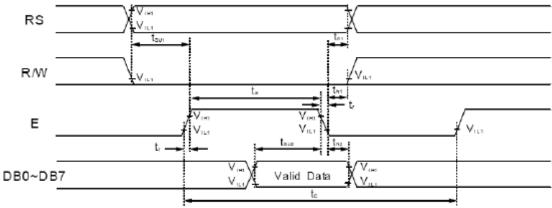
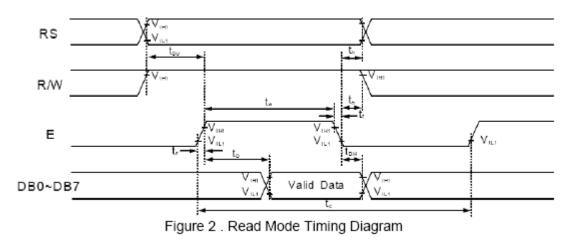



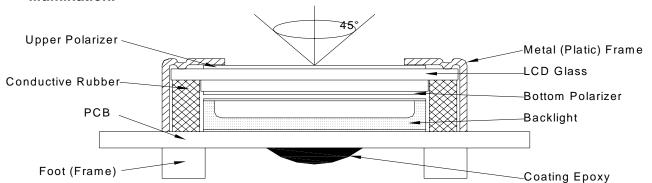
Figure 1 . Write Mode Timing Diagram

6. COMMAND LIST

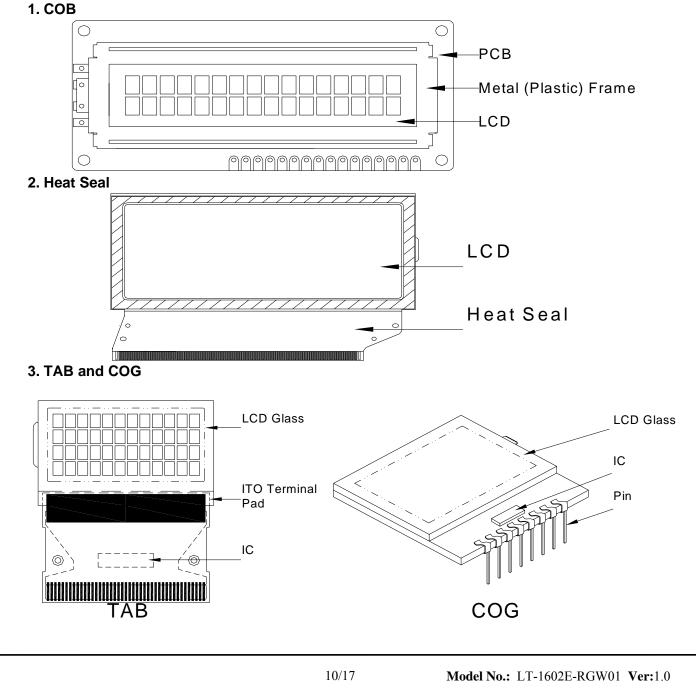
Instruction			_	Ins	tructi	on Co	ode	_	_		Description	Execution
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Instruction Code	time(fsoc=270)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC.	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and make shift of entire display enable.	39µs
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	x	x	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	39µs
Function Set	0	0	0	0	1	DL	N	F	x	x	Set interface data length (DL : 4-bit/8-bit), numbers of display line (N : 1-line/2-line), display font type (F : 5 X 8 dots/ 5 X 11 dots)	39µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39µs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0µs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43µs

NOTE: When an MPU program with checking the Busy Flag (DB7) is made, it must be necessary 1/2 fosc is necessary for executing the next instruction by the falling edge of the 'E' signal after the Busy Flag (DB7) goes to "LOW".

Issued Date: 2011.09.11


Doc. No.: 7. CHARACTER GENERATOR ROM Upp # 4 00 00 0001 0010 0011 0100 0101 0110 0111 1000 1011 1000 1001 1010 1011 1100 1101 1110 1111

4 5 16														
xxxx0000	BAM (1)		0	Ð	P	•	F				9	E,	ĊĊ	p
xxxx0001	(2)		1	A	Q	а	9			7	Ŧ	4	ä	q
xxxx0010	(3)		2	В	R	b	r		Γ	1	Ņ	X	ß	₿
xxxx0011	(4)	Ħ	3	C	5	C	S		┛	ゥ	Ŧ	E	ε	60
xxxx0100	(5)	\$	4	D	Ţ	d	ŧ.		•	Ι	ŀ	Þ	┠┨	Ω
xxxx0101	(6)		5	E	U	e	u			7	Ŧ]	5	ü
xxxx0110	(7)	8	6	F	Ų	f	Ų		7	ħ			ρ	Σ
xxxx0111	(8)	7	7	G	ĺIJ	9	W		7	ŧ	7	7	q	π
xxxx1000	(1)	ζ	8	H	X	h	X		4	2	7	Ņ	,	X
xxxx1001	(2))	9	I	Y	i	ч		Ċ	ካ	ļ	IL	-1	Ч
xxxx1010	(3)	¥		J	Ζ	j	Ζ		I		• •	Ŀ	j	Ŧ
xxxx1011	(4)	╋	;	Κ		k	{		7	ţ	E		X	Ę
xxxx1100	(5)	7	K	L	¥	1			Þ	Ð	7	7	4	Ħ
xxxx1101	(6)	—	=	М]	M	}		그	Z		2	Ł	÷
xxxx1110	(7)		>	Ν	^	n	÷		3	ţ	4	\sum	ñ	
xxxx1111	(8)		7	Π			÷		ey.	٩J	3	•	ő	


Issued Date: 2011.09.11 **Doc. No.:**

8. QUALITY SPECIFICATIONS

- 8 1. LCM Appearance and Electric inspection Condition
 - 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination.

- 2. View Angle: with in 45° around perpendicular line.
- 8-2. Definition

8-3. Sampling Plan and Acceptance

XI. Sampling Plan

MIL - STD - 105E (\parallel) ordinary single inspection is used.

XII. Acceptance

Major defect:AQL = 0.65%Minor defect:AQL = 1.5%

8-4. Criteria 1.COB

Defect	Inspection Item	Inspection Standards		
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject	
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject	
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject	
Major	PCB cutting defect	Exceed the dimension of drawing	Reject	

2.SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing , extra, wrong component or wrong orientation		Reject
Minor	Component position shift x component soldering pad x \rightarrow	X < 3/4Z Y > 1/3D	Reject Reject
Minor	Component tilt component D soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component θ PAD PCB	<i>θ</i> ≤ 20°	Reject

3. Metal (Plastic) Frame

Defect	Inspection Item	l II	rds		
Major	Crack / breakage	Any	/where	Reject	
		W	L	Acceptable of Scratch	
		w<0.1mm	Any	Ignore	
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2	
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1	
		w <u>></u> 0.3mm	Any	0	
		Note : 1. Above criteria applicable to scratch lines with distance greater than 5mm. 2. Scratch on the back side of frame (no visible) can be ignored.			
				Acceptable of Dents / Pricks	
		⊕ <u><</u> 1.0mm		2	
	Frame Dent, Prick	1.0<⊕ <u><</u> 1.5mm		1	
Minor	$\Phi = \frac{L + W}{2}$	1.5mm< Φ		0	
	2	/ pricks with dis	e criteria applicable tance greater than rick on the back s ignored	5mm	
Minor	Frame Deformation	Excee	d the dimension of	drawing	
Minor	Metal Frame Oxidation		Any rust		

4. Flexible Film Connector (FFC)

Defect	Inspection Item	Inspection Standa	rds
Minor	Tilted soldering	Within the angle +5°	Acceptable
Minor	Uneven solder joint /bump		Reject
		Expose the conductive line	Reject
Minor	Hole $\Phi = \frac{L + W}{2}$	Φ > 1.0mm	Reject
Minor	Position shift Y	Y > 1/3D	Reject
		X > 1/2Z	Reject

5. Screw

Defect	Inspection Item	Inspection Standards	
Major	Screw missing/loosen		Reject
Minor	Screw oxidation	Any rust	Reject
Minor	Screw deformation	Difficult to accept screw driver	Reject

6. Heatseal TCP FPC

Defect	Inspection Item	Inspection Standards	
Major	Scratch expose conductive layer		Reject
Minor	HS Hole $\Phi = \frac{L + W}{2}$	⊕> 0.5mm	Reject
Major	Adhesion strength	Less than the specification	Reject
Minor	Position shift $Y \xrightarrow{-\frac{1}{2}} \xrightarrow{-\frac{1}{2}$	Y > 1/3D	Reject
		X > 1/2Z	Reject
Major	Conductive line break		Reject

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards		
		Acceptable number of units		
		⊕ <u><</u> 0.10mm	Ignore	
		0.10<⊕ <u><</u> 0.15mm	2	
Minor	LED dirty, prick	0.15<⊕ <u><</u> 0.2mm	1	
		⊕>0.2mm	0	
		The distance between any two spots should be \geq Any spot/dot/void outside of viewing area is acce		
Minor	Protective film tilt	Not fully cover LCD	Reject	
Major	COG coating	Not fully cover ITO circuit	Reject	

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

9. Inspection Specification of LCD Defect **Inspect** Item Inspection **Standards** 0.03<W<0.05 W W<0.03 W>0.05 * Glass Scratch L<5 L<3 Any * Polarizer Scratch ACC. Minor Linear Defect 1 1 Reject * Fiber and Linear NO. material Note L is the length and W is the width of the defect 0.1<Φ<u><</u>0.15 0.15<Φ<u><</u>0.2 Φ<u><</u>0.1 Foreign material Φ Φ**>0.2** between glass and ACC. 3EA / 2 1 0 <u>100</u>mm² Black Spot and polarizer NO. or glass Polarizer Minor and glass * Polarizer hole or Pricked Φ is the average diameter of the defect. Note Distance between two defects > 10mm. protuberance by external force Unobvious ⊕<u><</u>0.3 * Φ 0.3<⊕<u><</u>0.5 **0.5<**Φ transparant foreign ACC. 3EA / 100mm² 1 0 material between NO. White Spot glass and glass or Minor and Bubble in glass and polarizer polarizer Φ is the average diameter of the defect. * Air protuberance Note Distance between two defects > 10mm. between polarizer and glass 0.10<⊕<u><</u>0.20 Φ>0.25 Φ **⊕**<0.10 0.20<⊕<u><</u>0.25 ACC. 3EA / 2 1 0 100mm² NO. Segment W is more than 1/2 segment width Reject Minor Defect Note $\Phi = L + W$ 2 Distance between two defect is 10mm Φ>0.25 Φ Φ**<0.10** 0.10<0<0.20 0.20<0<25 W<1/2 Seg W<1/2 Seg W Glue Ignore W<0.2 W<0.2 Protuberant Minor Segment ACC. 3EA / 2 1 0 NO. 100mm² $\Phi = (L + W) / 2$ 1. Segment В B<0.4mm 0.4<B<1.0mm B>1.0mm B-A B-A<1/2B B-A<0.2 B-A<0.25 Assembly Minor Judge Acceptable Acceptable Acceptable Mis-alignment 2. Dot Matrix Deformation>2° Reject Accept when stains can be wiped lightly with a soft cloth Stain on LCD Minor or a similar one. Otherwise, judged according to the Panel Surface above items: "Black spot" and "White Spot"

9. RELIABILITY

NO.	ltem	Condition	Criterion	
1	High Temperature Operating	70℃, 96Hrs		
2	Low Temperature Operating	-20℃, 96Hrs		
3	High Humidity	50℃, 90%RH, 96Hrs		
4	High Temperature Storage	80℃, 96Hrs		
5	Low Temperature Storage	-30℃, 96Hrs	No defect in cosmetic and operational functi	
	Vibration	Random wave	on allowable.	
6		10 ~ 100Hz	Total current Consumption	
0	VIDIATION	Acceleration: 2g	should be below doub le of initial value.	
		2 Hrs per direction(X,Y,Z)		
		-20℃ to 25℃ to 70℃		
7	Thermal Shock	(60Min) (5Min) (60Min)		
		16Cycles		
8	ESD Testing	Contract Discharge Voltage: +1 ~ 5kV and -1 ~ -5kV	There will be discharged ten times at every discharging	
0	ESD resulty	Air Discharge Voltage: +1 ~ 8kV and -1 ~ -8kV	voltage cycle. The voltage gap is 1kV.	

Note: 1) Above conditions are suitable for our company standard products.

2) For restrict products, the test conditions listed as above must be revised.

Issued Date: 2011.09.11 **Doc. No.:**

10. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichloro trifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water
- Ketone
- Aromatics
- (3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

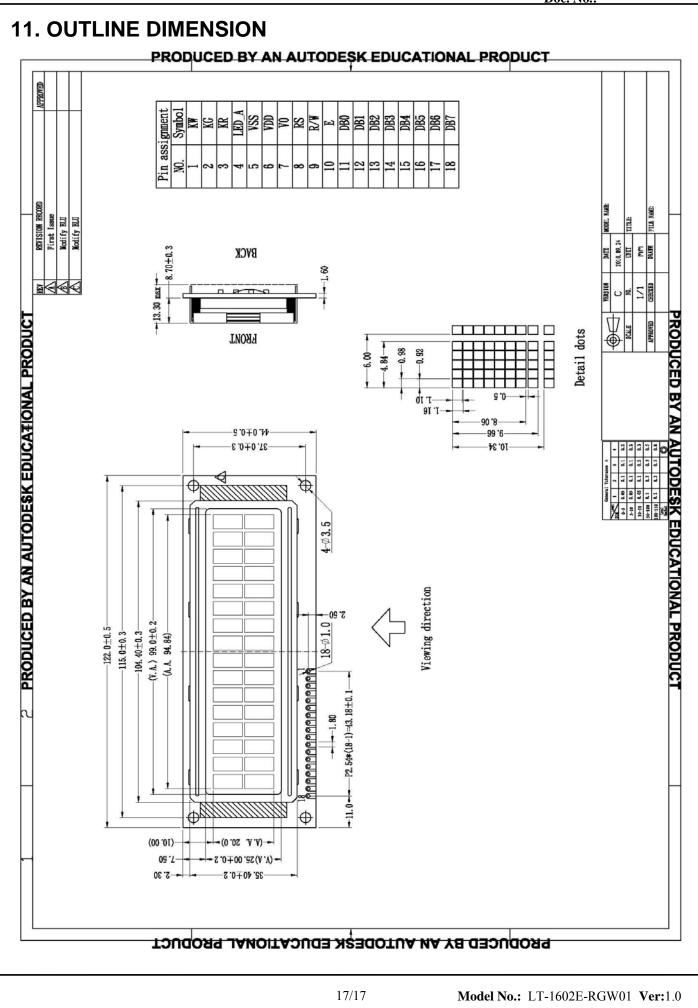
(4) Packaging

- Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.

- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.

- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
 - Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
 - If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
 - A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 - Usage under the relative condition of 40° C, 50%RH or less is reequired.

(6) Storage


- In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.
 - Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)

(7) Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol.

Which should be burned up later.

- When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

